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ABSTRACT

In many applications such as video surveillance or autonomous vehicles, people detection is a key
element, often based on feature extraction and combined with supervised classi cation. Usually, out-
put of these methods is in the form of a bounding-box containing an extracted people along with the
background. But in speci ¢ application contexts, this bounding box information is notigmt and

a precise segmentation of people silhouette is needed inside the bounding box. For videos, this is ac-
tually solved by using background subtraction strategies. However, this cannot be considered for the
case of stillimages that also occur in many video surveillance applications. To that aim, we propose to
consider that issue in this paper. The principle is to devise a complete scheme for people segmentation
inside people detection bounding boxes. Such a scheme relies on several steps: pre-processing, feature
extraction and probability map computation to approximately locate people silhouette, and graph cut
clustering to re ne the silhouette from the map prior. Since mangdént methods can be considered,
along with their associated parameters, tuning, we use a systematic approach towards determining the
best combination scheme to conceive a segmentation schemeé-ffieasure is used as a benchmark

for evaluation. Experimental results show the bene t of the proposed approach that goes beyond the
actual state-of-the-art.

1. Introduction deep learning methods, such as Convolutional Neural Networks
. ) . . (CNNSs) (Krizhevsky et al., 2012), that automatically learn fea-
People detection is a key element of any intelligent videgy, eq and classify them with nonlinear multi-Layer Perceptrons.
surveillance system since it provides the localization of peoplerpe gy ccess of these methods comes from their excellent ability
in images, mandatory for people tracking and recognition thaf, |e5r features from large datasets and this has contributed to

is the basis of safety systems. In the computer vision Iiteraturqheir recent massive usage in people detection tasks, see (Red-
people detection is known as a diult problem due to multiple ;1 4nd Angelova, 2015) and references therein.

possible combinations that can occur among people (With varigpe e detection mettods ustally previde a resultin the form of

tions of angle, pos&tc) and their clothes (habits, OuttelC). 5 recargular boundng box locatec arounc the peisor tha: has

Wlt_h these challenglng issues, peop_le_ det_ect|on has been a Vepgo; detected. However, a bounding box is not always su
active research area in computer vision in recent years (GOrgans for many evolved applications such as action recognition,
etal, _2014)_' N.umerous approaches hav_e been proposed. p%ople recognition, or people clothes parsing that need more
rst major scienti ¢ leap has been made with the use of hand-, o cise information on the person inside the bounding box: the
crafted multidimensional features (Haar (Mohan et al., 2001)gjjhqette of the person inside the bounding box is then needed.
HOG (Dalal and Triggs, 2005a; Zhu et al., 2006)) that wWerej, yhe cas of videc study, the standard way is to consider
provided to machine learning methods such as Support Vecty, qtion_hased background subtraction strategies (Sobral and

Ma‘?hi”es (Hearst et al., 1998) or boosting (Siala et al., 2009)\’/acavant, 2014), that provide partial information on the be-
to cite a few. These methods have been recently superseded I@ﬁging of pixels to the person silhouette. This initial informa-

tion can be combined with seeded clustering methods such as
graph cuts (Boykov and Kolmogorov, 2004) to obtain a precise
people segmentation by accounting for the contextual informa-
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tion in the image. However, background subtraction methodsonsidered data sets. Section 5 presents our evaluation method-

need temporal information to estimate the belonging of pixel®logy, the best settings of each segmentation scheme and the

to background or foreground, which is not possible for the caseesults obtained on each dataset with comparison with state-of-

of single shot still images. the-art approaches. Last section concludes.

Corsideting the cast of still images, few works have addressed

the issue of people silhouette segmentation. Recent prelimi-

nary works have aimed at combining Convolutional Neural Net2: Proposed method

works with Conditional Random Fields for the general task of .

semantic scene labeling (Zheng et al., 2015). For the more spé:1- Synopsis of the approach

ci ¢ tasks of people silhouette segmentation in still images, not As mentioned in the introduction, there are few works ded-

so many works have been proposed so far. In (Jojic et al., 2009¢ated to the precise segmentation of people inside bounding

the authors proposed a global approach that consists in angoxes, obtained from people detection methods. In addition

lyzing links between structural elements in images formed byhere are few databases that provide ground-truth segmentation

regions of pixels. A process based on color and texture featurésr evaluation and comparison purposes. This paper adresses

allowing to link these structural elements was also proposedyoth these issues. First a new people segmentation scheme in-

In (Migniot et al., 2011), the authors propose to use a shapside a bounding box is developed. Second, exhaustive evalu-

template prior to roughly extract people. The shape templatation is performed with the help of new ground truth datasets.

prior is obtained by a training step using a people segmentatiofhe segmentation scheme exploits some established methods

ground truth in bounding boxes. This shape template prior isrom the literature and eciently combines them for this spe-

combined with a graph cut clustering method to re ne the segci ¢ problem. Figure 1 sums up the whole approach. Our

mentation. Since this method relies on a very strong assumptiostheme is designed to extract precisely people silhouettes in

on the position of people in bounding boxes obtained from peoimages in the form of a bounding box, and obtained using ba-

ple detection (people are supposed centered inside), the samie techniques of person detection. To perform the segmen-

authors have proposed in (Migniot et al., 2013) to modify thetation, we need to estimate a probability map that provides

segmentation with edge detection priors. the class memberships of each pixel for the two classes peo-

So far, not so many methods are dedicated to the problem gfie/lbackground to discriminate. This probability map is used

people silhouette extraction from the output of people detectiofo initialize a graph-cut segmentation that can operate at the

based methods in stillimages. One rst explanation is probablyixel or the superpixel leveThe prcposet methoc has beet de-

related to the lack of segmentation ground truths for people se(signecin amocular way sc as to be able to: asses the bere t of

mentation datasets. Indeed, without ground truth labeled dateact step cortrol the corrplexity anc the corrputational speed

the developed methods cannot be adapted to the data by ttinof the whole straegy. To do so, we consider eight dirent

a learned model and the results cannot be correctly evaluateschemes that combine in dirent ways state-of-the-art meth-

In a recen corference work (Coniglio et al., 2015)we have  ods for pre-processing, probability map estimation and segmen-

prcposer a preliminary seqmertation schem for the seqmer-  tation re nement. For comparison purposes we will also con-

tation of pecple using corrbinec prokebilities extractec from  sider other state-of-the-art methods (Migniot et al., 2011; Yang

arpeaance shap: terrplate prior, anc color distributions Inthe et al., 2013).

light of this, we prcpostin this peper to design a new complete As shown in Figure 1, to segment precisely the people silhou-

strategy for precise people segmentation from bounding boxestte from a bounding bo:three méjor steps are considered that

obtained as the output of detection-based methods. To do s@e resume in the sequel:

we consider several possible image pre-processing associated

with di erent people extraction methods based oretént fea-

tures. These people extraction methods provide segmentation

probability maps from dierent priors that are combined with

a weighted combination and nally re ned with a graph-cut

clustering. However, given the large amount of data, making

the most of each method to achieve good segmentation results

is di cult becaussall thest patern recognition techniques in-

volve parameters that have to be manually tuned. To avoid this,

we propose to automatically determine the best segmentation

strategy as a whole, along with the best parameters of each con-

stituting considered method, and that provides in addition a low

processing time. This problem being diult, we consider a Fig. 1. Syropsis of our approach for seqmenting pecple silhouette in bound-

genetic algorithm that can determine, the best con guration bying boxes.

computationally exploiting the available labeled data.

The paper is organized as follows. Section 2 presents the dif-

ferent components that compose the proposed segmentatiofs Image pre-treament: the image of the bounding box

schemes that have to be optimized. Section 4 describes the can bene t from several pre-processings that can enhance
the performance of the next steps, as we have shown in
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(Coniglio et al., 2014). These processing steps are ltertheir settings)this will be done at once by the genetic ogtimize-
ing, color space change and color invariant transformation detailec in sedion 5.1.
tion. Di erent methods can be considered for each pre-

processing and their parameters have to be tuned.
Table 2. Different pre-treatment methods.

A Probability map estimation: this step aims at estimating Colorspace | Filter | Colorimetric invariant
the conditional probability of a pixel to belong to either ES\E/‘ ?\Aa:;is” Redlifg‘g’gg'%mates
background or foreground (the people silhouette). dbi HLS Bilateral 11l
ent cues can be considered to perform thisogelate with Lab MMM
features from appearance, shape template, and color dis- Luv a ne normalization
tributions priors, as we have considered in (Coniglio et al., YUV RGB rank

2015). A single probability estimator being not enough
robust, several of them are combined. 2.3. Probability maps

Segmentation re nement: given the estimated probabilityofLZ?Oie?r?m:(ftfi?ealL%Vl\jzge(teer;mre' nsgillﬁocuoent?e't)'oor:atl)gg?(b?g:%
map, a graph-cut classi es into two classforeground ging 9 peop g

; . - for each pixel. This information is extracted from three dif-
and background) the pixefrom the combined estimation . ) :
" e . ferent kinds of methods: shape template, color histograms and
of conditional probabilities. This can be performed at the

pixel or the superpixel level. sqliency map pr?ors. Three cﬁerent possiple shape ter_nplate
priors and two dierent color histogram priors are considered.

When several probability maps are extracted by several meth-

ods, they are combined altogether with a weighted combination.

b~

When we choose a speci ¢ con guration for each one of the
three above steps, we obtain speci ¢, but glient, segmenta-
tion schemes. These dirent con gurations are resumed in )
Table 1. Thetwo rst scheme correspon to the stat-of-the-  2-3-1. Shape template prior
art approaches of (Migniot et al., 2011) and (Yang et al., 2013). Given a bounding box image, a rst cue that can be consid-
The rst one is very simple, yet eective, and combines a mean eret_j _is a shape template prior to estimate the people silhouette
shape template prior with a graph cut clusteriiThe second ~ POSsItion.
one corsicers salien okject extraction anc se¢mertation for ex- . )
tracing the pecple silhoLette. The nexi scheme 1-3 have asim-  M€an shape template prioThe use of shape template priors
ilar architecture but consider additional color space transformdS common in literature (Migniot et al., 2010; Lin and Davis,
tion and feature-based probability maps that are combined aIt@-OlO)' In_deed, we can notice thatimages of people, in the form
gether.Scheme 4-6 are similar tcschem 3 but consider each ©f Pounding-boxes, are generally centered on the person. This
a new informationschem 4 considers the interest of saliency c0Mes from the fact that bounding-boxes are mostly results of
maps,schem 5 adds some pretreatmei(color spac: change, a.people. _detepuon process basgd on machine Iear.nlng trained
color invariant tranformetion anc | ter) andschem 6 consid-  With positives images for people in the center of the image. We
ers the use of a superpixel segmenta(baser SLIC or ERGC ~ Propose to use a shape template prior based probability tem-
mettods). Finally,scheme 7 anc 8 are similar tcschem 3 but plate in contrast to a binary shgpe te_mplate. In the case of bi-
consider two di erent multiple shap: terrplate priors (baseion Ny shape template, one applies directly the template on the
Histogran Differenct or HOG + SVM classier). As we will image as a mask. The use of a probability shape template is

see with the experiments, each method is built on top of the prd10re appropriate for our choice of segmentation method us-
vious by keeping its most important steps or enhancing some ¢f9 9raph cuts that needs such a membership information. Our

them. We detail now each possible scheme that can be consiffiean shape template prior based probability map is obtained

ered in these three steps. We do not provide too many detail°M @n averaging of all the ground-truth shapes in a given

on the considered methods, and refer the reader to our previoHf&iNing set. This prior is therefore computed only once.

works and reference therein (Coniglio et al., 2014, 2015). Multiple shape template priorsit is obvious that a simple

mean shape template prior cannot well account for therdi
ent poses anargles of view that can occur. To cope with this,
The rst step applied on bounding box images is performingwe propose to construct multiple shape template priors and to
several pre-processing methods listed in Table 2. We can amutomatically pick up the most appropriate one, similarly to
ply three di erent consecutive steps of pre-processing : a colowhat was proposed in (Migniot et al., 2011). The idea is to
space change, a ltering and a color invariant transformationdispose of a shape template adapted to the person posture. To
These pre-processings steps can have several bene ts: chardispose of multiple shape template priors, we proceed in the
ing color space allows to better direntiate some colors, |- following way. The ground truth training dataset is clustered
tering reduces small artefact and noise, whereas color invariam k clusters with &-means algorithm (Kanungo et al., 2002).
is used to reduce light ects such as high brightness. TheseThe optimal humber ok clusters that determines the number
methods can be of essential importance for color histogram anaf multiple shape priorwill be deteiminec al once by a ge-
graph-cut clustering steps. Since all these pre-processing stenetic algcrithm. This phase is done dne. Once the multiple
involve parameters (choice of best pre-processing method arghape priors are available, two @rent methods are considered

2.2. Pre-treatment



Table 1. Table showing, for eact pecple silhouette segmertation method, the corsidered procesing steps.

State-of-the-art approaches Proposed methods (with number of genes of each block)
Step/ Scheme (Migniot et al., 2011) | (Yang et al., 2013) 1 2 3 4 5 6 7 8
A Pre-treatment
Color space X@) | X@) | X(@) | X(@Q) | X@) | X(@) | X(@Q) | X(@)
Filter X(4)
Color invariant X(1)
A Probability maps
Multiple Shape template priol
Histogram Di erence X(3)
HOG + SVM X (1)
Mean Shape template prior X X(0) | X(0) | X(0) | X(0) | X(0) | X(0)
Color histograms X(2)
Color histograms strips X@3) | XB) | X@B) | X(B) | X(3) | X(3)
Saliency X X(3)
Weight combination X(2) | X@2) | X@) | X(2) | X(2) | X(2) | X(2)
A Graph-cut segmentation
Superpixels segmentation X(3)
Graph-cuts clustering X XB) | XB) | X@®) | XB) | XB) | X@B) | X(3) | X(3)
[ Total number of genes [ [ G]G0 [ a] 3] @]

to determine, given a bounding box, the most plausible shaperswill be oftimizec at once with the genetic algcrithm. Given
template prior. A rst method is based on color appearanceahese color histograms, we estimate the class memberships us-
of foreground and background, modeled by color histogramsng the color distributions.

Given a shape template prior, we initialize these histograms

with the polors of the original image, each being Welghted by2.3.3. Saliency prior
the considered template shape prior. The absoluterdnce . . ) o
between the two histograms provides a s@nc the shape tem- Saliency detection has recently received a lot of attention in
plate prior with the highest score is retained. The choice of thd@d€ processing (Yang et al., 2013; Cheng et al., 2015). Since
best color histogram representation (color spacenurrbelof e most salient object inside a bounding box is supposed to
bins) will be peformec af once with the genetic algcrithm. A be the person of interest inside |F, saliency detection gnd seg-
second method considers histograms of oriented gradients Qentation methods can be conSIQ.ered ","S g_ood candidates for
features combined with Support Vector Machines to determin@2ckground or foreground probability estimation. Indeed, most
the most appropriate shape template prior. This method need§ thesé methods provide a membersto thest two classes

to be trained with positive and negative example. The training &t We convertin the form of a probability map. We have con-

is performed from the result of the ground truth clustering step>idered the approach of (Yang et al., 2013) that provides good

original images associated to a cluster of ground truths are us&iI€ncy estimation on reference benchmaThis method has

as positive image to train one class of the SVM and other origt"€€ parameters to tune: a superpixel compactness value, an

inal images are used as negative examples. Each trained HOREO rate and a ltering. These three parameters vewill be

+ SVM classi er is then used to determine the best shape terrd€tefminecaionce by the genetic ogtimizztion step.

plate prior (in a one-versus-all approach). The choice of the
best kernel for the SVihclassi er will be peiformec al once 2.3.4. Probability map weighted combination

with the genetic algcrithm. The three cues presented previously provide possibly 6 dif-

ferent information on the possible position of people inside the
2.3.2. Color Histograms priors bounding box. This information is represented by a probabil-
The second cue that we consider uses an appearance-baggdof belonging toforeground Pferegrounq n) or background
prior with the color of pixels. We have chosen to de ne the ap-PP2%k9rounq{ ) for eact pixel. When several cues are consid-
pearance with histograms methods. Histograms-bmettods  ered, a combination is necessary, and a weighted combination
have the advantage to be much faster than other methods suistperformed to obtain the global nal probability estimation for
as Gaussian Mixture Models and can be enough precise to repach pixel:

resent the color appearance within a bounding box. We use two X X
color histograms, one for background and one for foreground —pforegroung .y = kplz‘“egr"””d(pi) with k=1 (D)
(people silhouette). Two derent types of color histograms are k k

built. The rst considers an histogram computed on the whole

bounding box, and is weighted with the shape template priowhereP,*®¥°*“"{p;) denotes the conditional estimated proba-
previously de ned. The second considers the concatenation dfility from the k-th map for the foreground (people) class. The
histograms computed on strips in the bounding box. The twsame formula applies respectively fBPackIou{p). A ge-
types of histograms have several parameters: number of bimeetic optimizatiorwill be usecal once to determine the ogtimal
and the number of strips for the second method. These paramweighing ccel cients i of thek considered cues.
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3. Graph-cut segmentation from probability maps andp; (average colors for the case of super pixel graphs). The
o o ) ] _optimization is done with the min-cimax- ow implementa-

The nal step consists in classifying the image given the estizjgn of (Boykov and Kolmogorov, 2004). The result of graph
mation of probabilities obtained from the combination of prob- ;¢ labeling is a binary image where each vertex has been as-
ability mapsinto two classe (foreground pecple anc back-  gigned to one class among background foreground pecple.
ground). For that we use a.Graph—cut (Boykov and Jolly, 2001)rherefore, we obtain the nal people silhouette.
method. Graph-cut techniques are among the most powerful The three parameters , that appear in the capacities and
methods that extract foreground from background. Graph-Cumjjarities formula are coecients of great importance in the

enable object segmentation with the optimization of a discrete, ) segmentation results. These paramewill be determined
energy function de ned on a binary label det f0; 1gby com- 5 oce by the genetic optimizetion.

puting a minimum cut on the graph associated to the image.

The key task is the proper de nition of this energy in order to

capture the properties of object regions and those of boundariés Datasets
between them. We consider a graph= (V; E) composed of

iVj nodes, where each nogieis assigned a labél 2 L andjEj To test the ability of our proposed segmentation schemes we

edges. Two dierent types of graphs are considere@zaray consider several datasets. We have picked datasets from peo-
and Grady, 2012): 8-grid graphs where nocorrespond to p[e de;tection and people recognition (;hallenges, where sup-
pixels and superpixel graphs where vertices correspoisL-to plied images are from a people-detection-based method. We

peipixel regions. The set of edges are both inferred by direcpave also selected datasets in order to have various poses, an-

spatial neighborhood relationship. For superpixel generatior8!€S Of view and illumination problems. In towe have tested

we consider two methods: SLIC (Achanta et al., 2012) and dataseldividec intoGsets_, with a total of 1,797 image§. Im- .
ges are mainly recorded in outdoors and transportation envi-

Eikonal-based Region Growing Clustering (ERGC) (Buyssen§l )
et al., 2014). Both are used only in tschem 6 for segmenta- ronments. People may wear drent clothes and may carry
tion various objects (bag, suitcaséc). Moreover people may be

To classify each node of the graph into two classes, we corkn crowd apd be sur.rounded py other people. In these cases we
sider the following energy: ave considered objects garr|ed by people as foreground classes
and the people surrounding as background classes. Indeed we
X X consider that the people detection method has been trained to
{= argpszin Wi(p) + t S(piP) 1y (2) detect onepeison. All the ground truths used for evaluation
p2v Pi2V p;2Ny, have been handmade in order to have a precise evaluation.

The best segmentation (clustering into the two classe's.fore‘il VIPeR dataset
ground: people and background) corresponds to the minimum } ] )
of the energy{,in the setF of all possible labeling solutions. ~ The ViPeR dataset (Gong et al., 2014) is very popular in the

The rst term of the energy is called capacities and is de ned€valuation of people-recognition methods. The dataset is com-
as: posed of bounding boxes of 128x48 pixels of people who are

W (pi) = log(P" (pi)) (3)  Walking and was recorded in streets during the day. People can

o have several poses (front, side and back). Several colorimet-
It uses the probabilities of each vertex to belong toltf®ass  (ic problems are present with strong illumination and gloomy

(people or background), and is obtained from the weightegnages. People wear dirent clothes and can carry several ob-
_comblnatloq probability map. When supgrplxels are consMere%dS (suitcase, bag, clothestc). We have noticed that the
instead of pixels, the average of probability values is computeilg, | reference ground truth of people segmentation used in the

over the entire region. The second term is called similaritiegate-of-the-art approach provided by the STEL approach (Jojic

and is obtained from the product of two terms. The tefm, ¢t 5., 2009) contains several mistakes. So we have handmade
is the Potts prior that encourages piecewise-constant Iabellngy ourselves 250 more precise ground truth images.

andN,, is the set of edges qf; with others vertices of graph.

The termS(pi; p;) expresses a similarity measure between botty 5 prID 2011 dataset

verticesp; andp; and is given by:

| The people re-ID 2011 (Hirzer et al., 2011) (PRID 2011) is

d(pi; pj) 1 also a dataset used in the people-recognition challenges. The

S(pip) = exp —— “dist(pr b)) 4 provided images consist of a set of bounding boxes describ-

' ing the motion of people. Bounding boxes are focused on peo-
with Y ple with an angle, that changes between side and perspective.
x People are recorded in front or back pose. The background is

d(s;sj) = (s s)? (5)  homogeneous in bounding boxes (composed of agstone). Im-

=1 ages have a colorimetric problem in that they tend to be green.

Wheredist(p;; p;) is the Euclidean distance between the ver-Images sizes are 128x64 pixels. People weaeuwdint clothes,
tices (the center of superpixels for the case of super pixetan carry objects (newsletters, bag) and can push a stroller. We
graphs). The quantitd(p;; p;) denotes the sum of distances have handmade 250 precise ground truth images with diverse
between the color channep$ and p} associated to vertices people.



4.3. INRIA Person dataset 5.1. Genetic algorithm

The INRIA Person dataset (Dalal and Triggs, 2005b) is also  As we have mertionec it, the whole straegy we prcpose in-
used in people-detection challenges. It has been used to train volves a lot of differeni possibilities e.g. pre- | teling mettods
to test most people-detection-based methods. It is composed anc asscciatec perameters Thatis why a genetic optimizetion is
homogenous images recorded in streets, mountains, and foreusec ai once to attomaically deteimine the bes cor g urations.
where people are in various poses (front, side, back) with dif|t is peiformec with a pogulation of 12C chrcmcsome thai er-
ferent activities (posing for photo, sport, dance). Many imageicode possible sclutions Eact chremcsome correspond to a
contain several people in the same bounding box representaticorrplete seting of our prcposet pecple silhotette extraction
of crowed environments. Two sizes of images are availablemethod.A chrcmcsome is dividec into severa blocks which
128x6+ pixels and 160x96 pixels. The dérence between the are corrposet of one or severa gene (illustratec in pareithe-
two sizes corresponds to the addition of background around trse: in Table 1) Eact gene ercode: eithel the use of 8 method

bounding box. Evaluation is done with 390 precise handmad(binary gene or the value of a perarreter (quartizec possible

ground truth images provided by (Migniot et al., 2010).

values).As ar exarrple, let us corsidel the | ter block of Table

1 usecin the 5" scheme It is corrposer of 4 genes one gene

4.4, BOSS European Dataset

is use( for the choice of the | ter anc the othel three are used

for the | ter perameters. The genetic algcrithm use: a stardard

The BOSS European Dataset (Boss, 2009) is focused on acor g uretion anc is corrposet of four step: (initialization, se-

tion recognition and people recognition challenges for translection, crossove anc mutetion). The algcrithm begins with an

portation environments. The dataset is composed of severinitialization stef anc itetetively prccesse step: of selection,
videos recorded in a train in motion during a sunny after-crossove anc mutation urtil the pogulation is steble:

noon with di erent scenarios (people walking, ghting). This
dataset does not contain bounding boxes of people detection. To
generate these, we have used the well-known people-detection
method of (Dalal and Triggs, 2005a) based on Histogram Of
Gradients (HOG) combined with Support VectMachines
(SVM) to extract bounding boxes of 160x96 pixels in two se-
qguences. The rst set was made from one sequence, and is com-
posed of 453 images divided into 12 people walking in front
of the camera. The second set was made from an another se-
guence, and is composed of 64 images divided into 11 people
walking with a perspective angle of view. Each set of images
was mixed in order not to nd temporal constancy between im-
ages. A precise handmade ground truth was completed for each
image.

5. Evaluation

To perform the evaluation of the investigated segmentation
schemes we propose, a precise methodology is necessary. In-
deed, in many papers, the separation between training and test
sets is not clear and the provided results are often optimistic
since they were obtained for a given (arbitrary) partitioning of
the ground truth dataset. A good methodology to evaluate clas-
si cation results is to use &-fold cross validation to separate
test and training sets, and this enable to obtain scores that are
closer to the empirical risk. To assess the performance of the
proposed methods, we consider two scores: classi cation ac-
curacy and processing time. This enables to compare the dif-
ferent methods on derent levels (see Table 3). Since all the
segmentation schemes are genetically optimized to choose the
better tuning of methods and their associated parameters, Table
4 shows the one obtained for all segmentation schemes. Fi-
nally, several visual results are provided in Figures 4, 5, 6 and
7. Before entering into the analysis of the result, we detail how
genetic ogtimizetion is peiformec anc how classi cation accu-
racy is computed b¥K-fold cross validation.

The initialization steg corstruct: a list of cardidate sclu-

tions (callec pogulation). The initialization of the chremc-

some is made by block. Thus the gene: correspondng to

a choice of methoc are rst rardomly initialized Then,
the gene coiresponing to mettods peraneters are in turn

rardomly initialized Finally, if ceitain gene are not used,
they are se to zero Figure 2 il lustrate: the gene ercocing

of the | ter block. The gen¢ coiresponing to the method
is markecin pink color, those¢ corresponiing to their assc-

ciatec perarreters are markec in greer color anc the genes
that are not usec are markecin yellow color. As ar exan-

ple, let us corsidel the gaussiar blur | ter, the rst gene
correspond tothe | tertype the nexttwo indicate the size
of this | ter, anc the las' gene thai is not usec is se to

zero Let's now corsidel the exanple of the bilatera | -

ter, as mertionec above the rst genc¢indicate: the | ter

type while the othel three corresponc to their perarreters
(neigtbothood sigme spactanc sigme color).

The crossove stef aims al gereraling new cardidate sclu-
tions from existing one: in the pogulation. A child is prc-
ducec from mixing two chrcmcsome: rardomly chesen.
Figure 3 illustrates ar exanrple of this crossove stef in
our geneical algcrithm. The child is oktainec by succe«-
sively copying the block of one of the two paients (A or
B). A rardorr sanpling is usec to deteimine the block to

copy.

The mutation stey corsiste in slightly mocifying a part of
the new chrcmcsome gereratec in the crossove step This
choice has beer done in ordel to oktain new chrcemcsomes
different from paients anc alsc to covel a wide range of
sclutions For that we distinguist two case illustratecin
Figure 3: 1/ In the cast of a mutation of a gene correspon-
ing to the choice of a methoc (illustratec in orange color
in Figure 3): the selectec geneis rardomly moci ed with



a mutation rate of 25% The othel gene of the corsic-

erec block are re-initializec (as describecin the initialize-

tion step) 2/ In the cast of a mutation of a gene corre-

spondng to a perarreter of a methoc (illustratecin puiple
color in Figure 3): the selectec gene is rardomly moci-

ed with a mutation rate of 25% or a smal value is added
within ar inteival thar is plus or minus 10% of the actual

value with a mutetion rate of 50% Thest peranreters val-

ues are selectec in ordet to let the genetic algcrithm cor-

verge quickly.

For the selection step the cardidate: are sortec accorcing
tothe t nes: score¢ detailec below. The selectec cardidates
(the rst half) are kept in ordel to oktain a steble size of
porulation for eact gerelation. The othel one: (the ser-
onc half) are rejected The genetic algcrithm is stopped
wher the bes cardidate of the pogulation has not changed
duiing 1C gerelations.

Fig. 2. Genetercocing of the | ter block.

Fig. 3. Example of crossove and mutation stepsin our genetic algcrithm.

5.2. K-fold Cross Validation

7

being impossible to do by hand, each segmentation scheme is
optimized as a whole using a genetic algorithm that automat-
ically determines the best con guration according to a tness
measure de ned as the classi cation accuracy. These learning
and tuning are performed on the training dataset, the test set is
used only for the evaluation of the segmentation scheme. To
have an estimated accuracy close to the empirical risk; a
fold cross validation is performed whenever an evaluation is
needed, and each obtained model is estimated according to the
F-measure score (higher score is better):

precision recall

F-measure= 2 — (6)
precision+ recall
true positive
recall = rue p . (7)
true positivet false negative
. true positive
precision= P (8)

true positive+ false positive

For the optimization performed by the genetic algorithm, a
8-fold cross validation is performed on the training set. This
enables to use thE-measure on the training set as a tness
score. A F-measure score is computed for each image of the
training set and averaged on all the images to de ne the classi-
cation accuracy of that fold. The average of this accuracy on
all folds provides the score of the scheme on the training dataset
under study. A similar procedure is performed to estimate the
processing time.

If K-fold cross validation provides an accurate estimation of
the segmentation scheme performance on the training set, this
does not directly provide a nal scheme, sinkeschemes are
generated. We have chosen to retain the one with the highest
classi cation accuracy on the training set for the generation of
the results in Figures 4, 5, 6 and 7. To assess the performed
of that retained scheme, an evaluation by 8-icros: valide-
tion is performed but only the test set this time, and an average
F-measure is retained.

5.3. Experimental results

Table 3 shows the results obtained for each dataset with each
segmentation scheme whereas Table 4 shows the parameters
tuned by the genetic optimization. Table 3 shows results di-
vided into 2 categories: F-measure and processing time. We
have choserK = 8-fold-cross validatiorfor all dataset and
schemes. Each scheme has been performed on one CPU thread
cadenced at 3.4Ghz. To have a fair evaluation with state-of-the-
art approaches, the schemes of (Migniot et al., 2011) and (Yang
et al., 2013) have also been genetically optimized. We consider
the segmentatioschem of (Migniot et al., 2011) as the ref-
erence scheme and this constitutes our baseline that we would
like to overcomeln table 3, the results agpeaing in greetr color
are equiralent to or highei thar the bes methoc of the-stat¢-of-
the-art agproache anc those agpea in rec color coiresponcto
the bes of our oveiall score.

We rst analyze the results presented in Table 3. The baseline

For each segmentation scheme, the training set is used for thesults of (Migniot et al., 2011) and the best scores are bold
learning of methods that compose the scheme and to determifeced. Scheme of (Migniot et al., 2011) that we consider as our

the best parameter settings of the considered methods. This tasliseline is a simple method (mean shape templatepgoaph



Table 3. F-meesure results and time procesing obtained for the corsidered seqmentation scheme with respec to the state-of-the-art approaches of
(Migniot et al., 2011), (Yang et al., 2013)

State-of-the-art approaches Proposed methods
Dataset/ Scheme # (Migniot et al., 2011) | (Yang etal., 2013) 1 2 3 4 5 6 7 8
BOSS S-1 (160x96) 0.899 0.550 0.897 | 0.905| 0.913 | 0.912 | 0.916 | 0.840 | 0.900 | 0.895
(Boss, 2009) 16ms 90ms 16ms | 22ms | 23ms | 118ms| 25ms | 110ms | 39ms | 28ms
BOSS S-2 (160x96) 0.857 0.660 0.862 | 0.871| 0.883 | 0.881 | 0.881 | 0.810 | 0.860 | 0.851
(Boss, 2009) 16ms 100ms 16ms | 256ms | 25ms | 121ms | 203ms | 108ms | 33ms | 27ms
INRIA (128x64) 0.839 0.730 0.837 | 0.854 | 0.859 | 0.860 | 0.859 | 0.790 | 0.845 | 0.832
(Dalal and Triggs, 2005b Ims 59ms 11lms | 14ms | 15ms | 73ms | 60ms | 82ms | 18ms | 15ms
INRIA (160x96) 0.839 0.590 0.839 | 0.852 | 0.855| 0.850 | 0.856 | 0.800 | 0.848 | 0.835
(Dalal and Triggs, 2005b) 15ms 92ms 15ms | 24ms | 25ms | 114ms| 110ms | 110ms | 32ms | 29ms
VIPeR (128x48) 0.887 0.750 0.887 | 0.887 | 0.894 | 0.900 | 0.894 | 0.830 | 0.883 | 0.864
(Gong et al., 2014) 10ms 60ms 10ms | 12ms | 13ms | 86ms | 82ms | 74ms | 17ms | 15ms
PRID2011 (128x64) 0.818 0.780 0.832 | 0.894 | 0.900 | 0.900 | 0.876 | 0.813 | 0.882 | 0.822
(Hirzer et al., 2011) 12ms 59ms 12ms | 18ms | 20ms | 84ms | 38ms | 81ms | 33ms | 29ms
Average 0.856 0.677 0.859 | 0.877 | 0.884 | 0.883 | 0.880 | 0.814 | 0.870 | 0.850

13ms 77ms 13ms | 19ms | 20ms | 99ms 86ms 94ms | 26ms | 24ms

cut clustering) but provides good results on almost all datasetsiethod is interesting but the average computing cost is multi-
(ar avelage score of 0.856). This scheme is interesting since plied by a factor of 8 with an average accuracy very close to
its processing time is very lo(ar avelage prccesing time of ~ schem 3. The difference of the prccesing time is due to the
13 ms). Indeed, the shape prior being computedne on the  conplexity of the | ters knowing thal the genetic algcrithm
whole dataset, only the graph-cut has to be run on the boundirdoes not take this informetion into accoun for ogtimizing pe-
box. rarreters For exarrple with this scheme the prccesing time

If we now have a look to variations of this segmenta-increase from 25ms (BOSS-S1 (160x96) to 110m: (INRIA
tion schemes(scheme 1 to 3), we can see some enhance- (160x96)). The gddltlon of more pre-processings is therefore
ments. Schem 1 adds color space changschem 2 adds Mot very concluding.
an appearance-based prior (with global color histograms) as- Schem 6 considers the interest of working at the superpixel
sociated with a weighted combination aschem 3 replaces level instead of the pixel level for the graph-cut clustering. As
the global color histograms with concatenated stripped coloit can be seen in Table 4, the best superpixel method is ERGC
histograms. Each modi cation frorscheme 1 to 3 enables but this lowers the classi cation accura(ar aveiage scor¢ of
to gradually enhance the results. This shows the inte¢oest 0.814). On the one hand, disposing of superpixels enables to
changr the color spact anc to corrbine the shap: prior with  work on a graph of reduced size for graph-cut clustering, but
ar appeaance-baser prior. Schem 3 always provides results this is at the cost of computing the superpixels, which is high as
that are much better than the baseline results of (Migniot et alit can be see(ar avelage prccesing time of 94 ms). In addition
2011) and shows all these bene(respetively avetage scores  if the superpixel is not accurate, this has a very strong in uence
of 0.859 0.877 anc the bes with 0.884). However, this comes on the nal accuracy and the use of superpixels is therefore not
with additional costs in processing time of approximately 50%concluding at all.

(extender from 13ms to 20ms) This acditional time is mainly Finally, scheme 7 anc 8 consider replacing the mean shape
due to the acdition of the color histograrr step. Fortunately, this template prior oschem 3 (that provided the best results in av-
processing time is still compatible with real time processing,erage) by optimized multiple shape template priors. This pro-
and can bene t from code enhancements. cessing time remains comparableschem 3 (respetively a
Results obtained with ttschem of (Yang et al., 2013) show prccesing time of 26ms anc 24ms) but the accuracy are lower
that saliency cue considered alonenot su cieni to oktain  than with a simple mean shape pr(respetively a score¢ of
state-of-the-art results Indeed for all teste( dataset: the se¢- 0.87Canc 0.850). This can seem surprising but con rms sim-
mertation results are lower thar those oktainec with (Migniot  ilar results obtained in (Migniot et al., 2010, 2011, 201In.
et al., 2011)anc the average prccesing time is high (77ms).  light of thes( oksevations we prcpose to retain the schem 3
However, once combined with trschem 3, this enables to (which is the bes in avelage with the ogtimizec peraneters
somehowaitain or enhance the results obtained with somegiver in Table 4.
dataset (INRIA (128x64) VIPeR anc PRID2011). As thiscan e have mentioned in section 2 that each method consid-
be seen from the results, this is not however very concluding,e in a given segmentation scheme is automatically optimized
since this is at the cost of high processing time, so saliency iz gnce with the help of a genetic algorithm. This is done at
not retained as an interesting cue for people extraction. two levels: choosing the best method when several ones are
In contrast,schem 5 adds some additional pre-processingavailable (e.g., choosing the right Itering method), choosing
to schem 3 (Itering and color invariants), and this enables to the best parameters of a given methods (e.g., the best parame-
further enhance the results schem 3 on BOSS-S1 anc IN- ters of the graph-cut clustering). Table 4 resumes the optimal
RIA (160x96 (respetively a scor¢ of 0.91€ anc 0.856). This methods and parameters that have been retained for each seg-



mentation scheme. If there are some small changes, one can
see that there is constancy between the optimal settings of the
di erent schemes. The color space choice, color histograms
and graph-cuts, that are the most important methods of the best
schemes, keep similar con gurations. In addition, the settings
found by the weights of the combination step of elient pri-
ors enables to see that the appearance-based prior is of essential
importance. This shows the dirence between the best seg-
mentation scheme we have retair(schem 3) and the state-
of-the-art approach of (Migniot et al., 2011).

Figures 4, 5, 6 and 7 show a comparison between the results
obtained with thebasiline results of (Migniot et al., 2011and
our bes prcposet schem (schem 3). Whaeve! the dataset
corsicered the results for both these schemes are vsais-
fying. The people are always correctly extracted and back-
ground is well detected. Nevertheless with basiine results
of (Migniot et al., 2011) small error appear mainly with bad
people extremity segmentation (foot, hand, letrs). Some of

these problems are corrected with the propcschem 3. Fig. 7. Pecple silhouette extraction results onthe PRID2011dataset (Hirzer

et al., 2011)(line 1 : 6 original images line 2: the pecple extraction results
obtained with the state-of-the-art scheme of (Migniot et al., 2011); line 3:

the pecple extraction results obtained with our proposec strategy (scheme
3).

appearance-based priors ¢sipelpixel graphs. Since it is very

di cult to assess the bene t of adding one typical method in-
side a given segmentation scheme, we have considered an ap-
proach driven by the data to evaluate the bene t of each seg-
mentation scheme. To do so, precise handmade segmentations
of people silhouette have been made, and a systematic opti-
mization of the composing methods has been perfoliatonce

by a genetic algorithm. This enables to more accurately eval-
uate the bene t of one scheme versus the others. With such a
systematic approach, we have been able to design a segmen-
tation scheme that goes beyond the actual state-of-the-art by
incorporating a color space change, a weighted combination of
mean shape and appearance-based priors, and graph-cut clus-
tering. The approach is at the end enough fast to be deployed
for real time processing, which is essential for industrial ap-
plications. In future works, we plan to tackle the problem of

people re-identi cation from their extracted silhouettes.
Fig. 6. Pecple silhouette extraction results on the VIPeR dataset (Gong
et al., 2014)(line 1 : 6 original images line 2: the pecple extraction results
obtained with the state-of-the-art scheme of (Migniot et al., 2011); line 3:
the pecple extraction results obtained with our proposec strategy (scheme References
3).
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Table 4.Best setings of methods obtained for the se¢mertation scheme with the genetical optimization

State-of-the-art approaches Proposed methods
Step/ Scheme # Migniotetal. | Yang etal. 1 2 3 4 ® 6 7 8
A Pre-treatment
.Color space - - Lab | Lab | YUV YUV Lab YUV YUV Luv
.Filter - - - - - - Bilateral - - -
.Color invariant - - - - - - RGB rank - - -
A Probability maps
Multiple Shape template priors
Histogram di erence
.color space - - - - - - - - HLS -
#bins color histogram - - - - - - - - 78 -
HOG + SVM
.SVM kernel - - - - - - - - - Linear
Mean Shape template prior
# class - - - - - - - - 2 3
Color histograms
.FG # bins - - - 36 - - - - - -
.BG # bins - - - 96 - - - - - -
Color histograms strip
.FG # bins - - - - 25 68 102 15 57 75
.BG # bins - - - - 61 91 118 106 106 138
A strips - - - - 32 31 35 28 37 31
Saliency
.Superpixels compactness - 76 - - - 276 - - - -
.error - 0.218 - - - 0.503 - - - -
.Filter - Gaussian - - - Gaussian - - - -
Weight combination
.Shape template prior - - - 51% | 39% 17% 33% 42% 32% 47%
.Color histograms - - - 49% | 61% 65% 67% 58% 68% 53%
.Saliency - - - - 18% - - - -
A Graph-cut segmentation
Superpixels segmentation
.Method - - - - - - - ERGC - -
.Size - - - - - - - 49px - -
.Compactness - - - - - - - 110 - -
Graph cuts clustering
82 - 84 77 60 62 81 69 70 63
6 - 6 10 13 11 23 13 29 25
3 - 3 20 25 26 14 24 41 50

Fig. 4. Pecple silhouette extraction results on the BOSE dataset (Boss, 200<(line 1 : 6 image: of the sequence 1 + 6 image: on the sequence 2; line 2: the
pecple extraction results obtained with the state-of-the-art schemeof (Migniot et al., 2011); line 3: the pecple extraction results obtained with our proposed
strategy (scheme 3).
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Fig. 5. Pecple silhouette extraction results onthe INRIA dataset (Dalal and Triggs, 2005b(line 1: 6 image: with 128x6< resolution + 6 image: with 160x96
resalution; line 2: the pecple extraction results obtained with the state-of-the-art schem« of (Migniot et al., 2011); line 3: the pecple extraction results
obtained with our proposec strategy (scheme3).
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