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ABSTRACT

In many applications such as video surveillance or autonomous vehicles, people detection is a key
element, often based on feature extraction and combined with supervised classi�cation. Usually, out-
put of these methods is in the form of a bounding-box containing an extracted people along with the
background. But in speci�c application contexts, this bounding box information is not su� cient and
a precise segmentation of people silhouette is needed inside the bounding box. For videos, this is ac-
tually solved by using background subtraction strategies. However, this cannot be considered for the
case of still images that also occur in many video surveillance applications. To that aim, we propose to
consider that issue in this paper. The principle is to devise a complete scheme for people segmentation
inside people detection bounding boxes. Such a scheme relies on several steps: pre-processing, feature
extraction and probability map computation to approximately locate people silhouette, and graph cut
clustering to re�ne the silhouette from the map prior. Since many di� erent methods can be considered,
along with their associated parameters, tuning, we use a systematic approach towards determining the
best combination scheme to conceive a segmentation scheme. TheF-measure is used as a benchmark
for evaluation. Experimental results show the bene�t of the proposed approach that goes beyond the
actual state-of-the-art.

1. Introduction

People detection is a key element of any intelligent video
surveillance system since it provides the localization of people
in images, mandatory for people tracking and recognition that
is the basis of safety systems. In the computer vision literature,
people detection is known as a di� cult problem due to multiple
possible combinations that can occur among people (with varia-
tions of angle, pose,etc.) and their clothes (habits, out�ts,etc.).
With these challenging issues, people detection has been a very
active research area in computer vision in recent years (Gong
et al., 2014). Numerous approaches have been proposed. A
�rst major scienti�c leap has been made with the use of hand-
crafted multidimensional features (Haar (Mohan et al., 2001),
HOG (Dalal and Triggs, 2005a; Zhu et al., 2006)) that were
provided to machine learning methods such as Support Vector
Machines (Hearst et al., 1998) or boosting (Siala et al., 2009),
to cite a few. These methods have been recently superseded by
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e-mail: olivier.lezoray@unicaen.fr (Olivier Lézoray)

deep learning methods, such as Convolutional Neural Networks
(CNNs) (Krizhevsky et al., 2012), that automatically learn fea-
tures and classify them with nonlinear multi-Layer Perceptrons.
The success of these methods comes from their excellent ability
to learn features from large datasets and this has contributed to
their recent massive usage in people detection tasks, see (Red-
mon and Angelova, 2015) and references therein.
Peopledetection methodsusually providearesult in theform of
a rectangular bounding box locatedaroundthepersonthathas
beendetected. However, a bounding box is not always su� -
cient for many evolved applications such as action recognition,
people recognition, or people clothes parsing that need more
precise information on the person inside the bounding box: the
silhouette of the person inside the bounding box is then needed.
In the caseof video study, the standard way is to consider
motion-based background subtraction strategies (Sobral and
Vacavant, 2014), that provide partial information on the be-
longing of pixels to the person silhouette. This initial informa-
tion can be combined with seeded clustering methods such as
graph cuts (Boykov and Kolmogorov, 2004) to obtain a precise
people segmentation by accounting for the contextual informa-
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tion in the image. However, background subtraction methods
need temporal information to estimate the belonging of pixels
to background or foreground, which is not possible for the case
of single shot still images.
Considering thecaseof still images, few works have addressed
the issue of people silhouette segmentation. Recent prelimi-
nary works have aimed at combining Convolutional Neural Net-
works with Conditional Random Fields for the general task of
semantic scene labeling (Zheng et al., 2015). For the more spe-
ci�c tasks of people silhouette segmentation in still images, not
so many works have been proposed so far. In (Jojic et al., 2009)
the authors proposed a global approach that consists in ana-
lyzing links between structural elements in images formed by
regions of pixels. A process based on color and texture features
allowing to link these structural elements was also proposed.
In (Migniot et al., 2011), the authors propose to use a shape
template prior to roughly extract people. The shape template
prior is obtained by a training step using a people segmentation
ground truth in bounding boxes. This shape template prior is
combined with a graph cut clustering method to re�ne the seg-
mentation. Since this method relies on a very strong assumption
on the position of people in bounding boxes obtained from peo-
ple detection (people are supposed centered inside), the same
authors have proposed in (Migniot et al., 2013) to modify the
segmentation with edge detection priors.
So far, not so many methods are dedicated to the problem of
people silhouette extraction from the output of people detection
based methods in still images. One �rst explanation is probably
related to the lack of segmentation ground truths for people seg-
mentation datasets. Indeed, without ground truth labeled data,
the developed methods cannot be adapted to the data by �tting
a learned model and the results cannot be correctly evaluated.
In a recent conferencework (Coniglio et al., 2015),we have
proposeda preliminary segmentation schemefor the segmen-
tation of people using combined probabilities extractedfrom
appearance,shapetemplateprior, andcolordistributions.In the
light of this,weproposein thispaper to design a new complete
strategy for precise people segmentation from bounding boxes
obtained as the output of detection-based methods. To do so,
we consider several possible image pre-processing associated
with di� erent people extraction methods based on di� erent fea-
tures. These people extraction methods provide segmentation
probability maps from di� erent priors that are combined with
a weighted combination and �nally re�ned with a graph-cut
clustering. However, given the large amount of data, making
the most of each method to achieve good segmentation results
is di� cult becauseall thesepattern recognition techniques in-
volve parameters that have to be manually tuned. To avoid this,
we propose to automatically determine the best segmentation
strategy as a whole, along with the best parameters of each con-
stituting considered method, and that provides in addition a low
processing time. This problem being di� cult, we consider a
genetic algorithm that can determine, the best con�guration by
computationally exploiting the available labeled data.
The paper is organized as follows. Section 2 presents the dif-
ferent components that compose the proposed segmentation
schemes that have to be optimized. Section 4 describes the

considered data sets. Section 5 presents our evaluation method-
ology, the best settings of each segmentation scheme and the
results obtained on each dataset with comparison with state-of-
the-art approaches. Last section concludes.

2. Proposed method

2.1. Synopsis of the approach

As mentioned in the introduction, there are few works ded-
icated to the precise segmentation of people inside bounding
boxes, obtained from people detection methods. In addition
there are few databases that provide ground-truth segmentation
for evaluation and comparison purposes. This paper adresses
both these issues. First a new people segmentation scheme in-
side a bounding box is developed. Second, exhaustive evalu-
ation is performed with the help of new ground truth datasets.
The segmentation scheme exploits some established methods
from the literature and e� ciently combines them for this spe-
ci�c problem. Figure 1 sums up the whole approach. Our
scheme is designed to extract precisely people silhouettes in
images in the form of a bounding box, and obtained using ba-
sic techniques of person detection. To perform the segmen-
tation, we need to estimate a probability map that provides
the class memberships of each pixel for the two classes peo-
ple/background to discriminate. This probability map is used
to initialize a graph-cut segmentation that can operate at the
pixel or the superpixel level.Theproposedmethodhasbeende-
signedin amodular waysoasto beableto: assessthebene�t of
eachstep,control thecomplexity andthecomputational speed
of the whole strategy. To do so, we consider eight di� erent
schemes that combine in di� erent ways state-of-the-art meth-
ods for pre-processing, probability map estimation and segmen-
tation re�nement. For comparison purposes we will also con-
sider other state-of-the-art methods (Migniot et al., 2011; Yang
et al., 2013).
As shown in Figure 1, to segment precisely the people silhou-
ette from a bounding box,threemajor steps are considered that
we resume in the sequel:

Fig. 1.Synopsisof our approach for segmenting people silhouettein bound-
ing boxes.

À Image pre-treatment: the image of the bounding box
can bene�t from several pre-processings that can enhance
the performance of the next steps, as we have shown in
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(Coniglio et al., 2014). These processing steps are �lter-
ing, color space change and color invariant transforma-
tion. Di� erent methods can be considered for each pre-
processing and their parameters have to be tuned.

Á Probability map estimation: this step aims at estimating
the conditional probability of a pixel to belong to either
background or foreground (the people silhouette). Di� er-
ent cues can be considered to perform this andoperatewith
features from appearance, shape template, and color dis-
tributions priors, as we have considered in (Coniglio et al.,
2015). A single probability estimator being not enough
robust, several of them are combined.

Â Segmentation re�nement: given the estimated probability
map, a graph-cut classi�es into two classes (foreground
and background) the pixelsfrom the combined estimation
of conditional probabilities. This can be performed at the
pixel or the superpixel level.

When we choose a speci�c con�guration for each one of the
three above steps, we obtain speci�c, but di� erent, segmenta-
tion schemes. These di� erent con�gurations are resumed in
Table 1. Thetwo �rst schemescorrespondto thestate-of-the-
artapproaches of (Migniot et al., 2011) and (Yang et al., 2013).
The�rst one is very simple, yet e� ective, and combines a mean
shape template prior with a graph cut clustering.The second
oneconsiderssalientobjectextraction andsegmentation for ex-
tracting thepeoplesilhouette.Thenextschemes1-3 have a sim-
ilar architecture but consider additional color space transforma-
tion and feature-based probability maps that are combined alto-
gether.Schemes4-6 are similar toscheme3 but consider each
a new information:scheme4 considers the interest of saliency
maps,scheme5 adds some pretreatments(color spacechange,
color invariant transformation and�l ter) andscheme6 consid-
ers the use of a superpixel segmentation(basedSLIC or ERGC
methods). Finally,schemes7 and8 are similar toscheme3 but
consider two di� erent multipleshapetemplatepriors(basedon
HistogramDifferenceor HOG + SVM classi�er). As we will
see with the experiments, each method is built on top of the pre-
vious by keeping its most important steps or enhancing some of
them. We detail now each possible scheme that can be consid-
ered in these three steps. We do not provide too many details
on the considered methods, and refer the reader to our previous
works and reference therein (Coniglio et al., 2014, 2015).

2.2. Pre-treatment

The �rst step applied on bounding box images is performing
several pre-processing methods listed in Table 2. We can ap-
ply three di� erent consecutive steps of pre-processing : a color
space change, a �ltering and a color invariant transformation.
These pre-processings steps can have several bene�ts: chang-
ing color space allows to better di� erentiate some colors, �l-
tering reduces small artefact and noise, whereas color invariant
is used to reduce light e� ects such as high brightness. These
methods can be of essential importance for color histogram and
graph-cut clustering steps. Since all these pre-processing steps
involve parameters (choice of best pre-processing method and

their settings),thiswill bedoneatonceby thegeneticoptimiza-
tion detailedin section 5.1.

Table 2.Different pre-treatment methods.
Color space Filter Colorimetric invariant

RGB Gaussian Greyworld
HSV Median Reduced coordinates
HLS Bilateral l1l2l3

L� a� b� m1m2m3
L� u� v� a� ne normalization
YUV RGB rank

2.3. Probability maps

The second step allows determining a conditional probability
of belonging to foreground (people silhouette) or background
for each pixel. This information is extracted from three dif-
ferent kinds of methods: shape template, color histograms and
saliency map priors. Three di� erent possible shape template
priors and two di� erent color histogram priors are considered.
When several probability maps are extracted by several meth-
ods, they are combined altogether with a weighted combination.

2.3.1. Shape template prior
Given a bounding box image, a �rst cue that can be consid-

ered is a shape template prior to estimate the people silhouette
position.

Mean shape template prior.The use of shape template priors
is common in literature (Migniot et al., 2010; Lin and Davis,
2010). Indeed, we can notice that images of people, in the form
of bounding-boxes, are generally centered on the person. This
comes from the fact that bounding-boxes are mostly results of
a people detection process based on machine learning trained
with positives images for people in the center of the image. We
propose to use a shape template prior based probability tem-
plate in contrast to a binary shape template. In the case of bi-
nary shape template, one applies directly the template on the
image as a mask. The use of a probability shape template is
more appropriate for our choice of segmentation method us-
ing graph cuts that needs such a membership information. Our
mean shape template prior based probability map is obtained
from an averaging of all the ground-truth shapes in a given
training set. This prior is therefore computed only once.

Multiple shape template priors.It is obvious that a simple
mean shape template prior cannot well account for the di� er-
ent poses andanglesof view that can occur. To cope with this,
we propose to construct multiple shape template priors and to
automatically pick up the most appropriate one, similarly to
what was proposed in (Migniot et al., 2011). The idea is to
dispose of a shape template adapted to the person posture. To
dispose of multiple shape template priors, we proceed in the
following way. The ground truth training dataset is clustered
in k clusters with ak-means algorithm (Kanungo et al., 2002).
The optimal number ofk clusters that determines the number
of multiple shape priorswill be determined at onceby a ge-
neticalgorithm. This phase is done o� ine. Once the multiple
shape priors are available, two di� erent methods are considered
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Table 1.Table showing, for eachpeople silhouettesegmentation method, the consideredprocessing steps.
State-of-the-art approaches Proposed methods (with number of genes of each block)

Step/ Scheme (Migniot et al., 2011) (Yang et al., 2013) 1 2 3 4 5 6 7 8
À Pre-treatment

Color space X (1) X (1) X (1) X (1) X (1) X (1) X (1) X (1)
Filter X (4)
Color invariant X (1)

Á Probability maps
Multiple Shape template prior

Histogram Di� erence X (3)
HOG+ SVM X (1)

Mean Shape template prior X X (0) X (0) X (0) X (0) X (0) X (0)
Color histograms X (2)
Color histograms strips X (3) X (3) X (3) X (3) X (3) X (3)
Saliency X X (3)
Weight combination X (2) X (2) X (3) X (2) X (2) X (2) X (2)

Â Graph-cut segmentation
Superpixels segmentation X (3)
Graph-cuts clustering X X (3) X (3) X (3) X (3) X (3) X (3) X (3) X (3)

Total number of genes (4) (8) (9) (13) (14) (12) (12) (10)

to determine, given a bounding box, the most plausible shape
template prior. A �rst method is based on color appearance
of foreground and background, modeled by color histograms.
Given a shape template prior, we initialize these histograms
with the colors of the original image, each being weighted by
the considered template shape prior. The absolute di� erence
between the two histograms provides a scoreandthe shape tem-
plate prior with the highest score is retained. The choice of the
best color histogram representation (color space andnumberof
bins)will beperformedat oncewith thegeneticalgorithm. A
second method considers histograms of oriented gradients as
features combined with Support Vector Machines to determine
the most appropriate shape template prior. This method needs
to be trained with positive and negative example. The training
is performed from the result of the ground truth clustering step:
original images associated to a cluster of ground truths are used
as positive image to train one class of the SVM and other orig-
inal images are used as negative examples. Each trained HOG
+ SVM classi�er is then used to determine the best shape tem-
plate prior (in a one-versus-all approach). The choice of the
best kernel for the SVMclassi�er will be performed at once
with thegeneticalgorithm.

2.3.2. Color Histograms priors
The second cue that we consider uses an appearance-based

prior with the color of pixels. We have chosen to de�ne the ap-
pearance with histograms methods. Histograms-basedmethods
have the advantage to be much faster than other methods such
as Gaussian Mixture Models and can be enough precise to rep-
resent the color appearance within a bounding box. We use two
color histograms, one for background and one for foreground
(people silhouette). Two di� erent types of color histograms are
built. The �rst considers an histogram computed on the whole
bounding box, and is weighted with the shape template prior
previously de�ned. The second considers the concatenation of
histograms computed on strips in the bounding box. The two
types of histograms have several parameters: number of bins
and the number of strips for the second method. These parame-

terswill beoptimizedatoncewith thegeneticalgorithm. Given
these color histograms, we estimate the class memberships us-
ing the color distributions.

2.3.3. Saliency prior
Saliency detection has recently received a lot of attention in

image processing (Yang et al., 2013; Cheng et al., 2015). Since
the most salient object inside a bounding box is supposed to
be the person of interest inside it, saliency detection and seg-
mentation methods can be considered as good candidates for
background or foreground probability estimation. Indeed, most
of these methods provide a membershipto thesetwo classes
that we convert in the form of a probability map. We have con-
sidered the approach of (Yang et al., 2013) that provides good
saliency estimation on reference benchmarks.This method has
three parameters to tune: a superpixel compactness value, an
error rate and a �ltering. These three parameters valueswill be
determinedatonceby thegeneticoptimization step.

2.3.4. Probability map weighted combination
The three cues presented previously provide possibly 6 dif-

ferent information on the possible position of people inside the
bounding box. This information is represented by a probabil-
ity of belonging toforeground Pf oreground(pi) or background
Pbackground(pi) for eachpixel. When several cues are consid-
ered, a combination is necessary, and a weighted combination
is performed to obtain the global �nal probability estimation for
each pixel:

Pf oreground(pi) =
X

k

� kPf oreground
k (pi) with

X

k

� k = 1 (1)

wherePf oreground
k (pi) denotes the conditional estimated proba-

bility from the k-th map for the foreground (people) class. The
same formula applies respectively forPbackground(pi). A ge-
netic optimizationwill beusedatonceto determinetheoptimal
weighting coef� cients� k of thek considered cues.
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3. Graph-cut segmentation from probability maps

The �nal step consists in classifying the image given the esti-
mation of probabilities obtained from the combination of prob-
ability mapsinto two classes(foreground:people and back-
ground). For that we use a Graph-cut (Boykov and Jolly, 2001)
method. Graph-cut techniques are among the most powerful
methods that extract foreground from background. Graph-cut
enable object segmentation with the optimization of a discrete
energy function de�ned on a binary label setL = f0;1gby com-
puting a minimum cut on the graph associated to the image.
The key task is the proper de�nition of this energy in order to
capture the properties of object regions and those of boundaries
between them. We consider a graphG = (V; E) composed of
jVj nodes, where each nodepi is assigned a labell i 2 L andjEj
edges. Two di� erent types of graphs are considered (Lézoray
and Grady, 2012): 8-grid graphs where nodescorrespond to
pixels and superpixel graphs where vertices correspond tosu-
perpixel regions. The set of edges are both inferred by direct
spatial neighborhood relationship. For superpixel generation,
we consider two methods: SLIC (Achanta et al., 2012) and
Eikonal-based Region Growing Clustering (ERGC) (Buyssens
et al., 2014). Both are used only in thescheme6 for segmenta-
tion.

To classify each node of the graph into two classes, we con-
sider the following energy:

{̂ = argmin
l2F

0
BBBBBBB@

X

pi2V

Wl i (pi) + t
X

pi2V

X

p j2Npi

S(pi ; p j) � � l i , l j

1
CCCCCCCA (2)

The best segmentation (clustering into the two classes fore-
ground: people and background) corresponds to the minimum
of the energy ˆ{, in the setF of all possible labeling solutions.
The �rst term of the energy is called capacities and is de�ned
as :

Wl i (pi) = �  � log(Pl i (pi)) (3)

It uses the probabilities of each vertex to belong to thel i class
(people or background), and is obtained from the weighted
combination probability map. When superpixels are considered
instead of pixels, the average of probability values is computed
over the entire region. The second term is called similarities
and is obtained from the product of two terms. The term� l i , l j

is the Potts prior that encourages piecewise-constant labeling,
andNpi is the set of edges ofpi with others vertices of graph.
The termS(pi ; p j) expresses a similarity measure between both
verticespi andp j and is given by:

S(pi ; p j) = � � exp
 
�

d(pi ; p j)
2 � � 2

!
:

1
dist(pi ; p j)

(4)

with

d(si ; sj) =

vut 3X

c=1

(sc
i � sc

j )
2 (5)

Wheredist(pi ; p j) is the Euclidean distance between the ver-
tices (the center of superpixels for the case of super pixel
graphs). The quantityd(pi ; p j) denotes the sum of distances
between the color channelspc

i and pc
j associated to verticespi

andp j (average colors for the case of super pixel graphs). The
optimization is done with the min-cut/max-�ow implementa-
tion of (Boykov and Kolmogorov, 2004). The result of graph
cut labeling is a binary image where each vertex has been as-
signed to one class among background andforeground:people.
Therefore, we obtain the �nal people silhouette.

The three parameters� , � ,  that appear in the capacities and
similarities formula are coe� cients of great importance in the
�nal segmentation results. These parameterswill bedetermined
atonceby thegeneticoptimization.

4. Datasets

To test the ability of our proposed segmentation schemes we
consider several datasets. We have picked datasets from peo-
ple detection and people recognition challenges, where sup-
plied images are from a people-detection-based method. We
have also selected datasets in order to have various poses, an-
gles of view and illumination problems. In totalwehavetested
4 datasetsdividedinto 6 sets, with a total of 1,797 images. Im-
ages are mainly recorded in outdoors and transportation envi-
ronments. People may wear di� erent clothes and may carry
various objects (bag, suitcaseetc.). Moreover people may be
in crowd and be surrounded by other people. In these cases we
have considered objects carried by people as foreground classes
and the people surrounding as background classes. Indeed we
consider that the people detection method has been trained to
detect oneperson. All the ground truths used for evaluation
have been handmade in order to have a precise evaluation.

4.1. VIPeR dataset

The ViPeR dataset (Gong et al., 2014) is very popular in the
evaluation of people-recognition methods. The dataset is com-
posed of bounding boxes of 128x48 pixels of people who are
walking and was recorded in streets during the day. People can
have several poses (front, side and back). Several colorimet-
ric problems are present with strong illumination and gloomy
images. People wear di� erent clothes and can carry several ob-
jects (suitcase, bag, clothes,etc.). We have noticed that the
usual reference ground truth of people segmentation used in the
state-of-the-art approach provided by the STEL approach (Jojic
et al., 2009) contains several mistakes. So we have handmade
by ourselves 250 more precise ground truth images.

4.2. PRID 2011 dataset

The people re-ID 2011 (Hirzer et al., 2011) (PRID 2011) is
also a dataset used in the people-recognition challenges. The
provided images consist of a set of bounding boxes describ-
ing the motion of people. Bounding boxes are focused on peo-
ple with an angle, that changes between side and perspective.
People are recorded in front or back pose. The background is
homogeneous in bounding boxes (composed of �agstone). Im-
ages have a colorimetric problem in that they tend to be green.
Images sizes are 128x64 pixels. People wear di� erent clothes,
can carry objects (newsletters, bag) and can push a stroller. We
have handmade 250 precise ground truth images with diverse
people.
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4.3. INRIA Person dataset

The INRIA Person dataset (Dalal and Triggs, 2005b) is also
used in people-detection challenges. It has been used to train or
to test most people-detection-based methods. It is composed of
homogenous images recorded in streets, mountains, and forests
where people are in various poses (front, side, back) with dif-
ferent activities (posing for photo, sport, dance). Many images
contain several people in the same bounding box representative
of crowed environments. Two sizes of images are available:
128x64pixels and 160x96 pixels. The di� erence between the
two sizes corresponds to the addition of background around the
bounding box. Evaluation is done with 390 precise handmade
ground truth images provided by (Migniot et al., 2010).

4.4. BOSS European Dataset

The BOSS European Dataset (Boss, 2009) is focused on ac-
tion recognition and people recognition challenges for trans-
portation environments. The dataset is composed of several
videos recorded in a train in motion during a sunny after-
noon with di� erent scenarios (people walking, �ghting). This
dataset does not contain bounding boxes of people detection. To
generate these, we have used the well-known people-detection
method of (Dalal and Triggs, 2005a) based on Histogram Of
Gradients (HOG) combined with Support VectorMachines
(SVM) to extract bounding boxes of 160x96 pixels in two se-
quences. The �rst set was made from one sequence, and is com-
posed of 453 images divided into 12 people walking in front
of the camera. The second set was made from an another se-
quence, and is composed of 64 images divided into 11 people
walking with a perspective angle of view. Each set of images
was mixed in order not to �nd temporal constancy between im-
ages. A precise handmade ground truth was completed for each
image.

5. Evaluation

To perform the evaluation of the investigated segmentation
schemes we propose, a precise methodology is necessary. In-
deed, in many papers, the separation between training and test
sets is not clear and the provided results are often optimistic
since they were obtained for a given (arbitrary) partitioning of
the ground truth dataset. A good methodology to evaluate clas-
si�cation results is to use aK-fold cross validation to separate
test and training sets, and this enable to obtain scores that are
closer to the empirical risk. To assess the performance of the
proposed methods, we consider two scores: classi�cation ac-
curacy and processing time. This enables to compare the dif-
ferent methods on di� erent levels (see Table 3). Since all the
segmentation schemes are genetically optimized to choose the
better tuning of methods and their associated parameters, Table
4 shows the one obtained for all segmentation schemes. Fi-
nally, several visual results are provided in Figures 4, 5, 6 and
7. Before entering into the analysis of the result, we detail how
geneticoptimization is performedandhow classi�cation accu-
racy is computed byK-fold cross validation.

5.1. Genetic algorithm

As we havementionedit, thewholestrategywe proposein-
volvesa lot of differentpossibilitiese.g.,pre-�l tering methods
andassociatedparameters.Thatiswhyageneticoptimization is
usedatonceto automatically determinethebestcon�g urations.
It is performedwith a population of 120chromosomesthaten-
code possible solutions. Each chromosomecorrespondsto a
completesetting of our proposedpeople silhouetteextraction
method.A chromosomeis divided into several blocks which
arecomposedof oneor several genes(il lustratedin parenthe-
sesin Table 1).Eachgeneencodeseither the useof a method
(binary gene)or the valueof a parameter (quantized possible
values).As anexample, let usconsiderthe�l ter block of Table
1 usedin the 5th scheme.It is composedof 4 genes:onegene
is usedfor thechoiceof the �l ter andtheotherthreeareused
for the�l ter parameters.Thegeneticalgorithm usesa standard
con�g uration andis composedof four steps(initialization, se-
lection, crossoverandmutation). Thealgorithm beginswith an
initialization stepand iteratively processesstepsof selection,
crossoverandmutation until thepopulation is stable:

� The initialization stepconstructsa list of candidatesolu-
tions(calledpopulation). Theinitialization of thechromo-
someis madeby block. Thus,thegenescorresponding to
a choiceof methodare �rst randomly initialized. Then,
thegenescorresponding to methodsparametersarein turn
randomly initialized.Finally, if certaingenesarenotused,
theyaresetto zero.Figure2 il lustratesthegenesencoding
of the �l ter block. Thegenecorresponding to themethod
is markedin pink color, thosecorresponding to theirasso-
ciatedparametersaremarkedin greencolorandthegenes
thatarenot usedaremarkedin yellow color.As anexam-
ple, let us consider the gaussianblur �l ter, the �rst gene
correspondsto the�l ter type,thenexttwo indicatethesize
of this �l ter, and the last genethat is not usedis set to
zero.Let's now consider the example of the bilateral �l -
ter, asmentionedabove,the �rst geneindicatesthe �l ter
type,while theotherthreecorrespondto their parameters
(neighborhood,sigmaspaceandsigmacolor).

� Thecrossoverstepaimsatgenerating newcandidatesolu-
tionsfrom existing onesin thepopulation. A child is pro-
ducedfrom mixing two chromosomesrandomly chosen.
Figure 3 il lustratesan example of this crossoverstepin
our genetical algorithm. The child is obtainedby succes-
sively copying the block of oneof the two parents(A or
B). A randomsampling is usedto determine theblock to
copy.

� Themutation stepconsistsin slightly modifying a partof
thenewchromosomegeneratedin thecrossoverstep.This
choicehasbeendonein orderto obtainnewchromosomes
different from parentsandalso to covera wide rangeof
solutions.For that,we distinguishtwo casesil lustratedin
Figure3: 1/ In thecaseof amutation of agenecorrespond-
ing to the choiceof a method(il lustratedin orangecolor
in Figure3): theselectedgeneis randomly modi�ed with
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a mutation rate of 25%. The other genesof the consid-
eredblock arere-initialized(asdescribedin theinitializa-
tion step);2/ In the caseof a mutation of a genecorre-
sponding to a parameter of a method(il lustratedin purple
color in Figure 3): the selectedgeneis randomly modi-
�ed with a mutation rateof 25%or a smallvalueis added
within an interval that is plusor minus10%of theactual
valuewith a mutation rateof 50%.Theseparametersval-
uesareselectedin order to let thegeneticalgorithm con-
vergequickly.

� For theselection step,thecandidatesaresortedaccording
to the�t nessscoredetailedbelow. Theselectedcandidates
(the �rst half) arekept in order to obtain a stable sizeof
population for eachgeneration. The otherones(the sec-
ond half) are rejected.The genetic algorithm is stopped
whenthebestcandidateof thepopulation hasnotchanged
during 10generations.

Fig. 2.Genesencoding of the �l ter block.

Fig. 3.Example of crossoverand mutation stepsin our genetic algorithm.

5.2. K-fold Cross Validation

For each segmentation scheme, the training set is used for the
learning of methods that compose the scheme and to determine
the best parameter settings of the considered methods. This task

being impossible to do by hand, each segmentation scheme is
optimized as a whole using a genetic algorithm that automat-
ically determines the best con�guration according to a �tness
measure de�ned as the classi�cation accuracy. These learning
and tuning are performed on the training dataset, the test set is
used only for the evaluation of the segmentation scheme. To
have an estimated accuracy close to the empirical risk, aK-
fold cross validation is performed whenever an evaluation is
needed, and each obtained model is estimated according to the
F-measure score (higher score is better):

F-measure= 2 �
precision� recall
precision+ recall

(6)

recall =
true positive

true positive+ f alse negative
(7)

precision=
true positive

true positive+ f alse positive
(8)

For the optimization performed by the genetic algorithm, a
8-fold cross validation is performed on the training set. This
enables to use theF-measure on the training set as a �tness
score. A F-measure score is computed for each image of the
training set and averaged on all the images to de�ne the classi-
�cation accuracy of that fold. The average of this accuracy on
all folds provides the score of the scheme on the training dataset
under study. A similar procedure is performed to estimate the
processing time.

If K-fold cross validation provides an accurate estimation of
the segmentation scheme performance on the training set, this
does not directly provide a �nal scheme, sinceK schemes are
generated. We have chosen to retain the one with the highest
classi�cation accuracy on the training set for the generation of
the results in Figures 4, 5, 6 and 7. To assess the performed
of that retained scheme, an evaluation by 8-foldcrossvalida-
tion is performed but only the test set this time, and an average
F-measure is retained.

5.3. Experimental results

Table 3 shows the results obtained for each dataset with each
segmentation scheme whereas Table 4 shows the parameters
tuned by the genetic optimization. Table 3 shows results di-
vided into 2 categories: F-measure and processing time. We
have chosenK = 8-fold-cross validationfor all datasetsand
schemes. Each scheme has been performed on one CPU thread
cadenced at 3.4Ghz. To have a fair evaluation with state-of-the-
art approaches, the schemes of (Migniot et al., 2011) and (Yang
et al., 2013) have also been genetically optimized. We consider
the segmentationschemeof (Migniot et al., 2011) as the ref-
erence scheme and this constitutes our baseline that we would
like to overcome.In table3, theresultsappearing in greencolor
areequivalent to or higherthanthebestmethodof the-state-of-
the-art approachesandthoseappearin redcolor correspondto
thebestof ouroverall score.
We �rst analyze the results presented in Table 3. The baseline
results of (Migniot et al., 2011) and the best scores are bold
faced. Scheme of (Migniot et al., 2011) that we consider as our
baseline is a simple method (mean shape template prior+ graph
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Table 3. F-measure results and time processing obtained for the considered segmentation schemeswith respect to the state-of-the-art approachesof
(Migniot et al., 2011), (Yang et al., 2013)

State-of-the-art approaches Proposed methods
Dataset/ Scheme # (Migniot et al., 2011) (Yang et al., 2013) 1 2 3 4 5 6 7 8
BOSS S-1 (160x96) 0.899 0.550 0.897 0.905 0.913 0.912 0.916 0.840 0.900 0.895
(Boss, 2009) 16ms 90ms 16ms 22ms 23ms 118ms 25ms 110ms 39ms 28ms
BOSS S-2 (160x96) 0.857 0.660 0.862 0.871 0.883 0.881 0.881 0.810 0.860 0.851
(Boss, 2009) 16ms 100ms 16ms 25ms 25ms 121ms 203ms 108ms 33ms 27ms
INRIA (128x64) 0.839 0.730 0.837 0.854 0.859 0.860 0.859 0.790 0.845 0.832
(Dalal and Triggs, 2005b) 9ms 59ms 11ms 14ms 15ms 73ms 60ms 82ms 18ms 15ms
INRIA (160x96) 0.839 0.590 0.839 0.852 0.855 0.850 0.856 0.800 0.848 0.835
(Dalal and Triggs, 2005b) 15ms 92ms 15ms 24ms 25ms 114ms 110ms 110ms 32ms 29ms
VIPeR (128x48) 0.887 0.750 0.887 0.887 0.894 0.900 0.894 0.830 0.883 0.864
(Gong et al., 2014) 10ms 60ms 10ms 12ms 13ms 86ms 82ms 74ms 17ms 15ms
PRID2011 (128x64) 0.818 0.780 0.832 0.894 0.900 0.900 0.876 0.813 0.882 0.822
(Hirzer et al., 2011) 12ms 59ms 12ms 18ms 20ms 84ms 38ms 81ms 33ms 29ms

Average 0.856 0.677 0.859 0.877 0.884 0.883 0.880 0.814 0.870 0.850
13ms 77ms 13ms 19ms 20ms 99ms 86ms 94ms 26ms 24ms

cut clustering) but provides good results on almost all datasets
(an averagescoreof 0.856). This scheme is interesting since
its processing time is very low(anaverageprocessing time of
13 ms). Indeed, the shape prior being computed o� ine on the
whole dataset, only the graph-cut has to be run on the bounding
box.

If we now have a look to variations of this segmenta-
tion schemes(schemes1 to 3), we can see some enhance-
ments. Scheme1 adds color space change,scheme2 adds
an appearance-based prior (with global color histograms) as-
sociated with a weighted combination andscheme3 replaces
the global color histograms with concatenated stripped color
histograms. Each modi�cation fromschemes1 to 3 enables
to gradually enhance the results. This shows the interestto
changethe color spaceand to combine the shapeprior with
an appearance-basedprior. Scheme3 always provides results
that are much better than the baseline results of (Migniot et al.,
2011) and shows all these bene�ts(respectively averagescores
of 0.859,0.877andthebestwith 0.884). However, this comes
with additional costs in processing time of approximately 50%
(extendedfrom 13msto 20ms).This additional time is mainly
dueto theaddition of thecolorhistogramstep. Fortunately, this
processing time is still compatible with real time processing,
and can bene�t from code enhancements.

Results obtained with theschemeof (Yang et al., 2013) show
that saliency cue considered alone isnot suf� cient to obtain
state-of-the-art results.Indeed,for all testeddatasets,the seg-
mentation resultsarelower thanthoseobtainedwith (Migniot
et al., 2011)and the averageprocessing time is high (77ms).
However, once combined with thescheme3, this enables to
somehowattain or enhance the results obtained with some
datasets(INRIA (128x64),VIPeRandPRID2011). As this can
be seen from the results, this is not however very concluding
since this is at the cost of high processing time, so saliency is
not retained as an interesting cue for people extraction.

In contrast,scheme5 adds some additional pre-processing
to scheme3 (�ltering and color invariants), and this enables to
further enhance the results ofscheme3 on BOSS-S1 andIN-
RIA (160x96)(respectively a scoreof 0.916and0.856). This

method is interesting but the average computing cost is multi-
plied by a factor of 4:3 with an average accuracy very close to
scheme3. The differenceof the processing time is dueto the
complexity of the �l ters, knowing that the genetic algorithm
doesnot takethis information into accountfor optimizing pa-
rameters.For example with this scheme,the processing time
increasesfrom 25ms(BOSS-S1 (160x96))to 110ms(INRIA
(160x96)). The addition of more pre-processings is therefore
not very concluding.

Scheme6 considers the interest of working at the superpixel
level instead of the pixel level for the graph-cut clustering. As
it can be seen in Table 4, the best superpixel method is ERGC
but this lowers the classi�cation accuracy(anaveragescoreof
0.814). On the one hand, disposing of superpixels enables to
work on a graph of reduced size for graph-cut clustering, but
this is at the cost of computing the superpixels, which is high as
it can be seen(anaverageprocessing timeof 94ms). In addition
if the superpixel is not accurate, this has a very strong in�uence
on the �nal accuracy and the use of superpixels is therefore not
concluding at all.

Finally, schemes7 and8 consider replacing the mean shape
template prior ofscheme3 (that provided the best results in av-
erage) by optimized multiple shape template priors. This pro-
cessing time remains comparable toscheme3 (respectively a
processing time of 26msand24ms) but the accuracy are lower
than with a simple mean shape prior(respectively a scoreof
0.870and0.850). This can seem surprising but con�rms sim-
ilar results obtained in (Migniot et al., 2010, 2011, 2013).In
light of theseobservations,we proposeto retain the scheme3
(which is the best in average)with the optimized parameters
givenin Table4.

We have mentioned in section 2 that each method consid-
ered in a given segmentation scheme is automatically optimized
at once with the help of a genetic algorithm. This is done at
two levels: choosing the best method when several ones are
available (e.g., choosing the right �ltering method), choosing
the best parameters of a given methods (e.g., the best parame-
ters of the graph-cut clustering). Table 4 resumes the optimal
methods and parameters that have been retained for each seg-
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mentation scheme. If there are some small changes, one can
see that there is constancy between the optimal settings of the
di� erent schemes. The color space choice, color histograms
and graph-cuts, that are the most important methods of the best
schemes, keep similar con�gurations. In addition, the settings
found by the weights of the combination step of di� erent pri-
ors enables to see that the appearance-based prior is of essential
importance. This shows the di� erence between the best seg-
mentation scheme we have retained(scheme3) and the state-
of-the-art approach of (Migniot et al., 2011).

Figures 4, 5, 6 and 7 show a comparison between the results
obtained with thebaseline resultsof (Migniot et al., 2011)and
our bestproposedscheme(scheme3). Whatever the dataset
considered,the results for both these schemes are verysatis-
fying. The people are always correctly extracted and back-
ground is well detected. Nevertheless with thebaseline results
of (Migniot et al., 2011) small error appear mainly with bad
people extremity segmentation (foot, hand, legsetc.). Some of
these problems are corrected with the proposedscheme3.

Fig. 6. People silhouette extraction results on the VIPeR dataset (Gong
et al., 2014)(line 1 : 6 original images;line 2: the people extraction results
obtained with the state-of-the-art schemeof (Migniot et al., 2011); line 3:
the people extraction results obtained with our proposedstrategy(scheme
3).

6. Conclusion

In this paper, we have considered a problem that is not so
commonly considered in literature with respect to the problem
of people detection in images: the problem of people silhouette
segmentation inside bounding boxes that are outputs of typi-
cal people detection methods. On the basis of the state-of-the-
art approach of (Migniot et al., 2011), we have proposed sev-
eral possible enhancements to this segmentation scheme. The
following ones have been considered: image pre-processing,

Fig. 7.People silhouetteextraction resultson the PRID2011dataset (Hirzer
et al., 2011)(line 1 : 6 original images;line 2: the people extraction results
obtained with the state-of-the-art schemeof (Migniot et al., 2011); line 3:
the people extraction results obtained with our proposedstrategy(scheme
3).

appearance-based priors andsuperpixel graphs. Since it is very
di� cult to assess the bene�t of adding one typical method in-
side a given segmentation scheme, we have considered an ap-
proach driven by the data to evaluate the bene�t of each seg-
mentation scheme. To do so, precise handmade segmentations
of people silhouette have been made, and a systematic opti-
mization of the composing methods has been performedatonce
by a genetic algorithm. This enables to more accurately eval-
uate the bene�t of one scheme versus the others. With such a
systematic approach, we have been able to design a segmen-
tation scheme that goes beyond the actual state-of-the-art by
incorporating a color space change, a weighted combination of
mean shape and appearance-based priors, and graph-cut clus-
tering. The approach is at the end enough fast to be deployed
for real time processing, which is essential for industrial ap-
plications. In future works, we plan to tackle the problem of
people re-identi�cation from their extracted silhouettes.
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